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In 1946, Sedov gave the exact solution to the problem of strong explosion 
with plane, cylindrical and spherical shock waves [l]. This solution was 
obtained for the case of an Ideal gas, without friction or heat conduction. 
As a consequence of these assumptions, there appeared a singularity In the 
behavior of the solution In the neighborhood of the center of the explosion, 
where, as Is well-known, heat conduction plays the dominating role [2]. 

The main purpose of the present paper is to use the method of Inner and 
outer asymptotic expansions to construct a eolutlon that Is uniforsily valid 
for the entire flow field, Including the part near the center. More pre- 
cisely, the problem consists of finding the leading term of the Inner aeymp- 
totic expansion by matching It to the solution of Sedov, since the latter 13 
the leading term of the outer asymptotic expansion. 

1. The defining parameter3 for the strong explosion problem (without 

counterpre33ure) in h viscous heat-conducting gas are: density of the gas 

In the undisturbed region po. , energy EO given off by the explosion, and 

the proportionality constant C In the relation between viscosity coefflcl- 

ent and the specific enthalpy 
/.& = cash (1.1) 

The dimensions of these quantities are a3 follows: 

h&l = g 9 
[I?,] = -g-, [C] = s (1.2) 

Here M, L, T are the corresponding symbols for mass, length, and time, 

while v I 0, 1, 2 correspond to plane, cylindrical, and spherical geome- 

tries. Prom the defining parameters, the problem may contain the combinations, 

with dimensions of time and length, respectively, 

Using these 

variables 

1 a 

t*+ p = ci+vp,- iG (1.3) 
co 

quantities as unlt quantities, we Introduce the dlmenslonIo3s 

to= t/t*, y"= y/1* $4) 

II77 
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The unknown functions of the problem are the velocity u , pressure 
density p ) and specific enthalpy h . We define their corresponding 

dimensionless values 
V 

u”= - P 
1*/t* ’ p” = pa, (1* / t*y ’ 

p+ h=----- 
co 

(1* :I*)” 

P 9 

(1.5) 

The system of Navler-Stokes equations for arbitrary one-dimensional motion 

of a vl3cou3 heat-conducting gas, for the case (1.1) In terms of the dlmen- 

elonless variables (1.4) and (1.5), Is (*) 

Here op and a. are the speclflc heats of the gas, and a Is the Prandtl 

number. 

For what follows, It would be convenient to change the Independent varl- 

able3 y and t of rectangular, cylindrical, or spherical coordinates to 

the Lagranglan variables ) and t , which, because of the continuity equa- 

tion can be given by the relations 

1.7 (1.7) 

The Navler-Stokes system In the new Independent varlables becomes 

(1.8) 

The problem reduces 

solution of the system 

boundary conditions. 

to determining the leading terms of the asymptotic 

(1.8) as t - - , which satisfies the Initial and 

P. Equations (1.8) are satisfied by the asymptotic solution 

*) From here on, the superscript on the dlmenslonless variables ~111 be 
dropped for slmpllclty. 
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y = o,t& [Y,(n) + 0 (t-x)], 
1+v 

4a0 - iG 
v = (3 + VI (r + 1) t IV0 (4 + 0 (WI 

8a02 
-al+” 

p= (3+v)w+d 3+v [PII (n> + 0 (t-y17 P= 

h= 8~09 
_a 1+” 

(3 + v)2 (7 + l)2 t 
3+” IfJo (4 + 0 @+)I 

where only the leading terms are given, (which are represented by the Sedov 

solution). The terms of the order t-x are neglected (the value of X>O 

will be determined later). In the above solution a, Is a constant, and the 

independent variable 
&i+vt 

_clf" 
a+" 

ao'+V 
II, (2.2) 

The system of ordinary differential equations for the functions F,(n), 

which is obtained by substituting (2.1) Into (1.8), Is the well-known system 

of equations of one-dimensional ho-energetic motion of an Ideal gas [21. 

After a simple transformation, this system may be written as (*) 

2Po’ = 2nVcl’ + VII, (nPo / ROY)’ = 0, P, = &HI) 
(2.3) 

(1+v)~ROYOYY&=1, (l+v)nY,‘-YY,+&Vll=O 

The solution of these equations must satisfy the boundary conditions on 
the surface of the shock wave, which for the functions F,(h) given by (2.1), 

will be F, (1) = 1 (2.4) 
Also, it must satisfy the condition of constant total energy In the dls- 

turbed region (**) 

l P \(++K+n= (3 + v)2 (T + i)2 (1 + v) E kc0 for v=o 
23+vnkao3+r k=i for v=i,2 (2.5) 

0 

For subsequent use, it Is sufficient to have only the approximate repre- 

sentation of the exact solution of (2.3) to (2.5) in a small neighborhood of 

the center of the explosion. In this region (as n _ 0 ), the solution has 

the form 
(2.6) 

y-1 y-1 

Y. = Y&P+‘) [ 1 + 0 (rq], v, = VOOrP+‘) [ 1 + 0 (rq] ( 

-1 

lx= y:l+v) 1 

&=hm[~+Ow~ &=Roon+[I+O(n.)], +=u,,n-f [I + owl 
Here the constants, by (2.3), are connected by the relations 

*) Here and below, the prime Indicates the derivative. 

**) Here E Is the dimensionless energy of the explosion 

E = E&*4 1 &,1*3+* 
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1 

-1 GL 
yoo = (& PO0 ‘) , R,, = I’,,+ 

v,, = 7% (_& poo- ‘)&, 

(2.7) 
y-1 

Ho0 - PooT 

I.e. they are expressed In terms of the constant Poe, which, just as a, in 

(2.1), Is known from the exact solution [2]. 

3. To determine the asymptotic expansions valid in the inner region of 

the flow, it Is necessary to use the matching conditions between these expan- 

sions and the outer expansions (2.1). Suppose that the Independent variable 

of order of unity for the Inner region Is 

where 6>0 , so that by (2.2), we have 

n = Jg Nt-S 
a0 

(3.2) 
According to the well-known principle of matching of the inner and outer 

expansions [33, it Is necessary to require that the Inner limit of the outer 

expansions (obtained by substituting (3.2) into (2.1) and then passing to the 

limit t - m for fixed ?I ) to agree with the outer limit of the inner ex- 

pansions (obtained when t 4 m with fixed n , I.e. by (3.2), as ,V -+ - ). 

(3.1) 

As a result of using (2.6), we find the following expressions for these 

limits,. written In terms of the variables of the inner expansions 

( -1 p=+6$l+V) ) 21 = ~OYOO 

Y-l _ 1tv 
y(l+") 

t -$G- 

au-l 

y(1tv) 11 + 0 (t-q1 

8a$ 

p = (3+v(r+1) Poot 

_21+" 

3+" [ 1 + 0 (t-q] (3.3) 

(p N)+ t-$[l+O(t-@)I 

To find the value of b , appearing in the exponents of the expressions 

(3.1) to (3.3), we shall define the inner region of the flow as the nelgh- 

borhood of the center.of the exploslon in which heat-conduction plays the 

dominant role. Turning to the energy equation (1.8), using the transforma- 

tion formulas for the independent variables t and N 

a a -- - at= at ( 2 1+v 
3+v 

_g)+L, 2&J2w.& (3.4) 
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and substituting into (1.8) Expressions (3.3), we find 

* _ r(i+v) 
2(r+ v) 

(3.5) 

4. In this manner, the form of the inner asymptotic solution Is now 

known, and it can be written as 

2 Y-l 1+u Y-l ---- --- 

y = p+” *(-f+“) Iyo (N) + 0 (t-a)l, 2, = t 3+v 2(y+v) [vo (iv) + 0 (t-k)] 

-2 ‘2 l+V -- 

p=t 3+” [po (Iv) + 0 (t-y], p = t *(y+v) [po (Iv) + 0 (t-h)] 

h=t 
-2353 

iho cm + 0 WI (43 
(the quantity k > 0 will be determined later). 

The conditions for matching these expansions to the outer asymptotic 

expansions, because of (3.3) and (3.5), are 

The system of ordinary differential equations, which must be satisfied by 

the functions /e(V) in the expansions (4.1), Is obtained by substituting 

these expansions in the original system of equations (1.8). 

As a result, we find 

po’=o, f&- PO (Yo2W’ 4- [2 -g+ - ff + VI 7 
2 (7 + 4 

](Nho’++-O 

- P0Y0”Yol = hoc y:i 
7 PO 

PO ‘.= r-_1 -&- 

[ 

2 r--1 (4.3) -_ 
Q== 3fv 2(r+v) y”- I [ 

2 ffv -- 
3+v ~(;t;q NY0 

Boundary conditions for these equations, In addition to the asymptotic 

conditions (4.2), are the obvious symmetry conditions at the center of the 

exploSiQn yo (0) = vo (0) = &’ (0) = 0 (4.4) 
The remaining problem Is to Integrate system (4.3) under these boundary 

conditions. 

5. First of all, we note that according to the first equation of (4.3), 
the pressure, as is to be expected, is constant across the inner region; and 

by (4.2) 

Prom now on, we Set 

800’ 
PO = (3 + v)* (7 + I) poo (5.9 
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1 

Yo = go G (54 
From the third equation of (4.3), we have 

h 0 = (1 -&--if MO @4 

Then, integrating the second equation (4.3) with boundary conditions @.4), 

We get 

gomifo”+A (fl~o’ - Lzflgo) = 0, 

2v _ 

%&= 1$-v 

A_ r--i(yp+v. (i$_ VI r _P __ 
TPO i 3+v 2 fr + v) 1 (5.4) 

Thus, the problem is reduced to integrating a single ordinary differential 

equation of the second order with boundary conditions 

Y-l 

It is not difficult to establish the behavior of the solution to (5.4) 

and (5.5). The first condition in (5.5), together with the obvious require- 

ment that the first derivative O,'(O) be finite and non-zero, leads to a 

unique representation of the deeired function in the neighborhood of the 

singular point N = 0 

g, (iv) = civ (4 + a,NO” + aaN’= + * . .) (a=2-?n) GWI 
Here c is an arbitrary constant, which is to be chosen to satisfy the 

second condition in (5.5). The remaining coefficients of (5.6) are deter- 

mined by recurrence relations, which we shall not write down here. In the 
neighborhood of the point at infinity, Equation (5.4) is satisfied by an 

asymptotic representation of the form 

The main term of this expansion, as is obvious from the above, corresands 

to condition (5.5), consequently, all its coefficients are known. 

The integration of Equation (5.5) was carried out numerically. The method 

used is described in Section 7. 

6, The degree of' approximation ensured by the outer and inner asymptotic 

solutions, will be determined by the order of the terms neglected in expan- 

sions (2.1) and ('c.l), i.e. by the value of the exponents x and X in 

these expansions. 

First of all, we note that in the outer flow region, the ratlo of the vis- 

cous and heat-conduction terms (neglected in (2.3)) to the inertial terms is 

of the order t-l f as readily shown. Furthermore, the integral of the total 

flow energy (2.5) was written without considering the contribution of the 

inner region, and therefore it contains an error, whose order is to be esti- 

mated. To obtain the estimate, we consider the integral of the total energy 

of the gas in the disturbed region (0, n) 
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E (n) = cord [ (e + Voa) dn (6.1) 
0” 

In this expression, we pass to the Inner limit (i.e. we express E(n) in 

terms of the inner expansion variables using (3.2), and pass to the limit of 

t+m for fixed N ), and using (2.6), we get 

f-f-l)(l+v) 

E(n) - t No+") for n-+0 (6.2) 

Since In the outer flow-region, where n _ 1 , the quantity E(n)- 1 and 

l/a (Y - 1) (1 + MY + y> < 1, then the estimate obtained just determines 

the degree of approximation ensured by the solution (2.1). 

Thus, we have 

x = ‘la (T - 1) (I+ 4 / (7 + v) (6.3). 

In the inner region, the ratio of the viscous and Inertial terms (neglected 

in (4.3)) to the main terms Is of the order t-1+8', where e'-&(l+v)/(y +v), 

and for the exponent in Expressions (3.3) we have B - *(v - l)(v + v). ShCe 

6 < 1 - 8'9 so in the expansions (4.1) we should set 

h = 'Mr- Mr + y) (6.4) 

7. As an example, the flow parameters in the center region of a point 
explosion with spherical shock waves 
(V - 2), were calculated. The adiabatic 
exponent and the Prandtl number were 
assumed to be: y - 1.4 and o - 0.7 
The constants P,, and (lo were taken 
from the solution in [21: a,= 1.033 , 
P,o= 0.3655 . 

The numerical Integration of Equation 
(5.4) was carried out with the aid of 
an electronic computer by the method of 
successive approximations. (Calcula- 
tions were made by engineer N.S. Mat- 
veeva, to whom the author expresses his 
thanks.) Without going Into details, 
we present the basic features of this 
method. The equation for the kth appro- 
ximation was expressed In the form of a 
linear equation 

Fig. 1 

Fig. 2 
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For the initial (zeroth) approximation the following linear function was 
taken: Y-l 

ii&‘* y 
s*(o) = ---R*-- N (7.2) 

which satisfies the boundary conditions (5.5). The quantity N* has been 
chosen sufficiently large. Integration 

fur 
of (7.1) In each of the subsequent 
a 
JY 

roxlmations (for chosen value of 
was carried out by the iteration 

method. After the necessary number of 

102 
approximations were completed, the 
calculations were repeated for a larger 
value of N*, and so forth. The inte- 
gration step (variable in the interval 
0, W”), the number of iterations, and 

rof I/J& 
the value of N”, were all determined 
bv the reauirement that the accuracv 

Fbx. 3 
be of the-order 

The computed 
re 
v. t 

ion are presented in Fig.1, showing the functions 
yo) obtained by numerical integration of Equatlons 

the temperature variation in the entire flow field at 
time. The temperature Is taken relative to Its value 
the shock wave surface, thus 

T -- 
T, - 

of b.Ol$ 
results for the central 

at the same Instant on 

(7.3) 

while the distance from the center of the explosion is taken relative to the 
instantaneous value of the radius of the wave surface, thus 

(7.4) 

AS ia clear, the 
instants of time (t 

the temperature profiles at different 
smooth3.y pass over to an envelope, cor- 

responding to the Sedov outer region (t = a). 

The variation of the quantity T,/T, at the center of the explosion is 
shown in Fig.3. We recall that everywhere t denotes the dimensionless 
time defined by (1.3) and (1.4). 
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