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In 1946, Sedov gave the exact solution to the problem of strong explosion
with plane, cylindrical and spherical shock waves [1]. This solution was
obtained for the case of an ideal gas, without friction or heat conduction.
As a consequence of these assumptions, there appeared a singularity 1in the
behavior of the solution in the neighborhood of the center of the explosion,
where, as 1s well-known, heat conduction plays the dominating role [2].

The main purpose of the present paper is to use the method of inner and
outer asymptotlic expansions to construct a solution that is uniformly valid
for the entire flow field, including the part near the center. More pre=-
cisely, the problem consists of finding the leading term of the inner asymp-
totic expansion by matching 1t to the solutlion of Sedov, since the latter 1s
the leading term of the outer asymptotlc expansion.

1. The defining parameters for the strong explosion problem (without
counterpressure) in & viscous heat~-conducting gae are: density of the gas
in the undisturbed region o, , energy Z£, given off by the exploslion, and
the proportionality constant (¢ 1in the relation between viscosity coefficl-
ent and the specific enthalpy

“‘ = cosh (1.1)
The dimensions of these quantities are as follows:
M mr mMr
[Pl = 13> [Eo] =~ (Cl=""F (1.2)

Here ¥, L, T are the corresponding symbols for mass, length, and time,
while v = 0, 1, 2 correspond to plane, cylindrical, and spherlical geoume~
tries. From the defining parameters, the problem may contain the combinations,
with dimensions of time and length, respectively,

2 1 38
c StV 3ty 3tV
t'= -P:;’ l*=c E poo (1'3)
Using these quantities as unit quantities, we introduce the dimensionless
varlables 9 — t/t*, yo — y/l‘ (1.4)
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The unknown functions of the problem are the velocity v , pressure p ,
density p , and specific enthalpy h . We define their corresponding

dimensionless values
(-] v o P P h =
V" = —— = ———— — -
*/v 14 Peo @/ t*)zs P ’ h (l* ] t*)'z (1.0)
The system of Navier-Stokes equations for arbiltrary one-dimensional motion
of a viscous heat-conducting gas, for the case (1.1) in terms of the dimen~

slonless variables (1.4) and (1.5), 1s (*)
v dv op @ (4 v 2 v h [0v v
elatoay) to—w(vw— vy ey (G — )

(e )= ol 4 L&l B (2] (3]

0 0 —1
3t (09") + 55 (ovy) = 0, p= Lol (=) (L6

Here o, and a, are the specific heats of the gas, and ¢ 1s the Prandtl
number .

Por what follows, it would be convenient to change the independent vari-
ables y and t of rectangular, cylindrical, or spherical coordinates to
the Lagrangian varlables § and ¢t , which, because of the continulty equa-
tion can be given by the relatlions

a 7}
1.7 3y = py® 54)‘ (1.7)

The Navier-Stokes system in the new lndependent variables becomes

L]

Par at + py” alJ; =y’ alp [h ( P d'w T >] -+ 2v — (pJ a‘p 7)
%=l o 5 (31
h(PJ %Y )2

ph (1.8)

0 d —
P!/vg%:L ’5%:2;1 PZTT

The problem reduces to determining the leading terms of the asymptotic
solution of the system (1.8) as t - = , which satisfles the initial and

boundary conditions.

2. Equations (1.8) are satisfied by the asymptotlc solution

*) From here on, the superscript on the dimensionless varlables willl be
dropped for simplicity.
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2 1+v

— 3+ -x _ 4ao " B+y -x
y=aot”" [Yo(n)+ O ()], '=BEwaED’ [Vo(n) + O (t)]
8(102 _21+v

= et TP + 00, p=TEL [Re(n) + 0 ()
1+

ag -2 T:
=gt o He() 406 (2.1)

where only the leadipg terms are given, (which are represented by the Sedov
solution). The terms of the order {™* are neglected (the value of x > O
will be determined later). In the above solution @, 1s a constant, and the
independent variable 1Ly S 2;%
n= e t P (2.2)

The system of ordinary differential equations for the functions F, (n),
which 1s obtalned by substituting (2.1) into (1.8), is the well-known system
of equations of one-dimensional iso-energetic motion of an ideal gas [2].

After a simple transformation, this system may be written as (*)
2P0, = 2n.V0' + Vo, (nPo/RoY)I = 0, PO = RoHo (2.3)
1 v ’ ’ 2
¢ +v)IT+1RoY0 Yo =1, (A+9)n¥y—Yot—gVo=0

The solution of these equations must satisfy the boundary conditions on
the surface of the shock wave, which for the functions F,(n) given by (2.1),

will be Fo (1) =1 (2.4)

Also, it must satisfy the condition of constant total energy in the dis-
turbed region (*¥*)
1

g(%+voz)dn=(3+v)=(r+1)2(1+v)E (k=0 '°'V=°) (2.5)

23+vnkaoa+7 k=1 for v=12

0

For subsequent use, it 1s sufficlent to have only the approximate repre-
sentation of the exact solution of (2.3) to {(2.5) in a small neighborhood of
the center of the explosion. In this region (as n - 0 ), the solution has
the form (2.6)
1—1

= ixw)

¥-1 Y-1 (

Yo=Yoor* ™ [1 +0(n%)], Vo= Vo™ [1-40(n%)]

1 21
Py= Py (1 4+0(m%)], Ro=Ron" [14-0(n*)], H,= Hon "1 40 @)

Here the constants, by (2.3), are connected by the relations

*) Here and below, the prime indicates the derivative,
**) Here £ 1s the dimensionless energy of the explosion

E = Egt%? / pool‘3+v
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1 — 1

Y _ VT__P ——_Y—\lwv . AY«
00 g oo ) ’ Ry = Py,
. (2.7)
THA/ 1y S =
Vo= "5~ (m Poo ) v Ho= Lo’

l.e. they are expressed in terms of the constant PFPso, which, Just as ¢, in
(2.1), 1s known from the exact solution [2].

3. To determine the asymptotlc expansions valid in the inner region of
the flow, 1t 1s necessary to use the matching conditions between these expan-
slons and the outer expansions (2.1). Suppose that the independent varilable
of order of unity for the inner region is

1+v

-2 — +b
N = ‘\l}t 3y (3'1)
where & > O , so that by (2.2), we have
N B YA
n=21Y N (3.2)

ao
According to the well-known principle of matching of the inner and outer
expanslons [3], it 1s necessary to require that the inner 1limit of the outer
expansions (obtalned by substituting (3.2) into (2.1) and then passing to the
limit ¢t - « for fixed ¥ ) to agree wilth the outer limit of the inner ex-
pansions (obtained when ¢ - « with fixed n , 1.e. by (3.2), as ¥ -» = ).

As a result of using (2.6), we find the following expressions for these
limits, written in terms of the varlables of the inner expansions

14w -1 2 v-1 -1
y = aOY(,O( 1+v N)Y(HV) t3+" Y(Hv) [1 +0(t B) (B +6'f'(r1+v))
4 1+ i
a Vo oa- Y Y(LY v x(1+v) -
v = (3+V)(0T+1) Voo( i 1’\/) ¢TI [ 4 0(1-8))
1+v
8ag? -2
P= @t Pt T 0 () 5-3)
5
p= T R (i V)7 v L+ 0 (9]
0
8agy 1+wv ‘212"1"5— B
B o= WHOO( T N)Tt v Y [14 0 ()]

To find the value of & , appearing in the exponents of the expressions
(3.1) to (3.3), we shall define the inner region of the flow as the neigh-
borhood of the center.of the explosion in which heat-conduction plays the
dominant role. Turning to the energy equation (1.8), using the transforma-
tion formulas for the independent variables t and N

) ] 14w N, o FRr =t ]
= (2 3V —5)T5‘1\7’ R (3.4)

at = ot
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and substituting into (1.8) Expressions (3.3), we find

T(1+v)
8 = ot L 3.5)
2(x+v) (

4, In this manner, the form of the inner asymptotic solution is now
known, and it can be written as

2 x1 e Yol
y — t3+v 2 {y+v) [yo (N) + 0 (t-)‘)], v=1 3+v  2{y+v) [Q)o (N) + 0 (t‘l)]
1+v ’ L+

p=t FlpM) 0N,  p=t T oo(N)+0(t7)]
gy MY
=t % [he (N)+ O (tM)] (4.1)
{the quantity X > O will be determined later).

The conditions for matching these expansions to the outer asymptotic
expansions, because of (3.3) and (3.5), are

¥-1 ¥-1
i (1+v) 4a 14w YAy
Yo (N)—)a"Y“( t':’ N)Y » N~ (':—i-i)Voo( o N)
8 141 + 1 14w v
= sy P (=727 Reo (SET V)T e e
14w -1y
ho ()= o (o V) 42)

The system of ordinary differentlal equations, which must be satisfied by
the functions J(¥) in the expansions (4.1), is obtained by substituting
these expansions in the original system of equations (1.8).

As a result, we find

’ 1 2 14y (+v)7y _
p=0 Sy pW h°)+[ LR 2(r+v)] (k' + _‘)"0

7_1 Poyo*Yo’ = ho, Po = 7—_—1“ ho w3
1.2 it+v _ (+v)7 ’ '
”°"[3+v 2(r+v>]y° [2 v 2(r+v)]Ny°

Boundary conditions for these equations, in addition to the asymptotic
conditions {4.2), are the obvicus symmetry conditions at the center of the
explosion Y0(0) = 9o (0) = hy’ (0) =0 (4.4)

The remaining problem 1s to integrate system (4.3) under these boundary
conditions.

%, Pirst of all, we note that according to the first equation of {4.3),
the pressure, as is to be expected, 1s constant across the inner region; and

by (%.2) 8ag?
=GR b G-

From now on, we let
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1
yo — g01+v (5.2)
From the third equation of (4.3), we have

U S 5.3
0T TEWG—D P8 ©-9)
Then, integrating the second equation (4.3) with boundary conditions {(4.4),
we get — 2
mg ” e i == e »-—-—-——~V
go&‘+A(Nﬁ 7 gﬂ 0, m= 1
—1 . 1w, {1+¥)7
A= T 6[2 - ] 5'4
T ° 23Ty T 204 ©4)
Thus, the problem is reduced to integrating a single ordinary differential
equation of the second order with boundary conditions
v-1

20(0) =0, go(N)_.}aole%Hv( 1+v N) Yt Noowo  (5.5)

3°1+v

It is not difficult to establish the behavior of the solution to (5.%)
and {5.5). The first condition in {5.5), together with the obviocus require~-
ment that the first derivative ¢, {0) be finite and non-gzero, leads to a
unique representation of the desired function in the neighborhood of the
singular polnt ¥ = O

ga(N)'—‘-:CN (1+61Na+azNﬂa +. . .) {2 =2 —m) (5.8)

Here o is an arbitrary constant, which is to be chosen to satisfy the
second condition in {5.5). The remaining coefficients of (5.6) are deter-
mined by recurrence relations, which we shall not write down here. In the
neighborhood of the point at infinity, Equation {5.4) is satisfied by an

agymptotic representation of the form
-1

Go(N)=kN ¥ [ +bN-B+bN% 4.1 (p=2-mIZ2) (D)

The main term of this expansion, as 1s obvious from the above, corresonds
to condition (5.5), consequently, all its coefficlents are known.

The integration of Equation (5.5) was carried out numerically. The method
used is described in Section 7.

6., 'The degree of approximation ensured by the outer and inner asymptotic
solutions, willl be determined by the order of the terms neglected in expan-~
sions (2.1) and (%.1), i.e. by the value of the exponents x and X in
these expansions.

First of 8ll, we note that in the outer flow region, the ratic of the vis~
cous and heat-conduction terms {neglected in {2.3)}) to the inertial terms is
of the order ¢™*, as readily shown. Purthermore, the integral of the total
flow energy (2.5) was written without considering the contribution of the
inner region, and therefore it contains an error, whose order 1is to be esti-
mated. To obtain the estimate, we conslder the integral of the total energy
of the gas in the disturbed region (0, n)
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E (n) = const < (-g% + VO’) dn (6.1)
0

In this expression, we pass to the inner limit (i.e. we express £E(n) in
terms of the inner expansion varilables using (3.2), and pass to the limit of
t - » for fixed N ), and using (2.6), we get

(v-1)(1+v)

E (n) ~1 2Av+y) for n -0 (62)

Since 1in the outer flow-region, where n ~ 1 , the quantity Z(n)~ 1 and
Yoty — 1) (1 + v)/(y + v) <1, then the estimate obtained just determines
the degree of approximation ensured by the solution (2.1).

Thus, we have
w=r—1)0+v/T+V) (6.3)
In the inner region, the ratio of the viscous and inertial terms (neglected
in (4.3)) to the main terms is of the order (18" where p'=§ (1+v)/(y +V),
and for the exponent in Expressions (3.3) we have g = #(y — 1)(y + v). Since
g < 1-8’, so in the expansions (4.1) we should set

A=(r—1/ 0+ (6.4)

T. As an example, the flow parameters in the center region of a point
explosion with spherical shock waves
2 (v = 2), were calculated. The adiabatic
v \ ,_—L—— exponent and the Prandtl number were
T assumed to be: y = 1.4 and o = 0.7
( The constants PF,, and 4, were taken
LT from the solution in [2]: &= 1.033 ,
#° Poo= 0.3655 .

/

~S The numerical integration of Equation
S Y (5.4) was carried out with the aid of

L — an electronic computer by the method of
/ successive approximations. (Calcula~
05 / N, tions were made by engineer N.S. Mat-

: \ veeva, to whom the author expresses his

L5

A

WA

10

thanks.) Without going into details,
we present the basic features of this

| method. The equation for the kxth appro-
ximation was expressed in the form of a
d/gj 02/”” ”Jy ;;’ linear equation

a7 a2 a7 2, \ (7.4)
Eo(e-nock) T 4 (Ngo(k)‘“ T - 30(!:)) =0

%%Q%

Fig. 1

é-F"Q ~

Fig. 2 \ “i‘ — f=
= /03\\t=/ ‘ I~Jz-7¢

)
I
—/

200 /7,
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For the initilal (zeroth) approximation the following linear function was
taken: 1

_ kN® T 7.2
Soa) = N (7:2)

which satisfies the boundary conditions (5.5). The quantity #N* has been
chosen sufficlently large. Integration
03 of (7.1) in each of the subsequent
A ”’,—" approximations (for chosen value of
14 § was carried out by the 1lteration
’,f"’/ method, After the necessary number of
2 o] approximations were completed, the
0 ,,a" calculations were repeated for a larger
vailue of ¥¥, and so forth. The inte-
gration step (variable in the interval
, b2 0, #*), the number of iterations, and
w0 - > s  the value of ¥*, were all determined
0 1 ViAd 195 7 by the requirement that the accuracy
Fig. 3 be of the order of 0.01%

The computed results for the central

reglon are presented in Fig.l, showing the functions M(K Y, pofwo) and

Vo {yo) Obtalned by numerical integration of Equations (5.4). Fig.2 shows
the temperature variation in the entire flow fleld at different instants of
time, The temperature is taken relative to 1its value at the same instant on
the shock wave surface, thus

[l

143

T 3 2 iR
.‘?’: - {v{“w__%)&?%uhuﬁ(’{-{-v} (?.3}

while the distance from the center of the explosion is taken relative to the
instantaneous value of the radius of the wave surface, thus
2
Yo Yo T (1.4)
Ys do
As 13 clear, the curves rg?resenting the temperature profiles at different

instants of time {¢ = 10°, 10*, 10°) smoothly pass over to an envelope, cor=~
responding to the Sedov solution for the outer region (t = o).

The variation of the quantity 27?; at the center of the explosion is
shown in Fig.3. We recall that everywherc ¢ denotes the dimensionless
time defined by (1.3) and {1.4).
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